
J .  Fluid Me&. (1980), uol. 96, pad 2, p p .  376393  

Printed in Oreat Britain 
376 

Onset of convection in a layered porous medium 
heated from below 

By R. McKIBBIN AND M, J. O’SULLIVAN 
Department of Theoretical and Applied Mechanics, 
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(Received 19 January 1979 and in revised form 9 May 1979) 

The formalism required to determine the criterion for the onset of convection in a 
multi-layered porous medium heated from below is developed using a straightforward 
linear stability analysis. Detailed results for two- and three-layer configurations are 
presented. These results show that large permeability differences between the layers 
are required to force the system into an onset mode different from a homogeneous 
system. 

1. Introduction 
The problem of the onset of convection in a fluid-saturated porous layer heated from 

below is of considerable interest because of its connection with the mathematical 
modelling of geothermal fields and also because it is one of the simplest problems 
involving hydrodynamic instability. The earliest work on the problem by Horton & 
Rogers (1945) and Lapwood (1948) established that convection occurs in a horizontal 
porous layer, confined between isothermal impermeable boundaries, for Rayleigh 
numbers above the critical value of 4n2. Subsequent research has been directed a t  both 
the problem of the finite amplitude motion for Rayleigh numbers above 4n2 and also 
more complicated onset problems. The present work is in the latter category. 

Lapwood considered a horizontal, homogeneous, isotropic layer with isothermal 
boundaries, an impermeable bottom boundary and either an impermeable or constant 
pressure top. This work was generalized by Gheorghitza (1961) for two particular 
inhomogeneous problems. The first problem involved two homogeneous layers with 
a slightly different permeability in the top layer from that in the bottom. In the second 
problem a layer with a very weak linear inhomogeneity in permeability was considered. 

Wooding (1959) considered the analogous problem of convection induced by a 
solute concentration gradient for a vertical cylindrical tube. He also modified the 
analysis of Lapwood (Wooding 1960) for the case where an upflow of fluid gives rise to 
a steady-state temperature profile of an exponential form. 

Prat (1966) investigated the effect of a uniform transverse flow on the onset problem 
for a homogeneous layer, finding that the critical Rayleigh number was unchanged but 
a modified flow pattern resulted. The more complicated problem of thermohaline 
convection was considered by Nield (1968) who as part of his work considered more 
general thermal and fluid boundary conditions for the thermal convection problem. 

Westbrook (1969) used energy methods to confirm the stability results of the small- 
disturbance linear analysis used by Lapwood and the other workers mentioned above. 
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The method developed by Westbrook allowed for a general equilibrium state whereas 
earlier work, except for that of Prat and Wooding, assumed that before the onset of 
convection the fluid was at rest with the temperature determined from conduction 
theory (usually linear). A simple problem of this more general type, where the equi- 
librium state consists of a uniform upward flow through the layer, was analysed by 
Sutton (1970) using the linear small-perturbation approach. Beck (1972) used the same 
energy method approach as Westbrook to examine the effect of confining lateral 
boundaries on the onset of convection, obtaining the critical Rayleigh number as a 
function of the geometry of the porous box considered. 

In all the above work, a simple linear relationship between-fluid density and tempera- 
ture was assumed. Sun, Tien & Yen (1972) derived a modified onset condition for the 
case of a fluid, such as water at low temperatures, which has a density maximum. 
Recently Straus & Schubert (1977) have introduced further physical realism into the 
onset problem by considering the exact dependence on temperature and pressure of 
fluid viscosity and density. Schubert & Straus (1977) also considered the onset of two- 
phase convection. 

Consideration of the effect of anisotropy of the porous medium on the criterion for 
the onset of convection has recently been made by several authors. Castinel & 
Combarnous (1 975) considered the effect of anisotropic permeability while Epherre 
(1 975) added anisotropy in thermal diffusivity. Tyvand (1 977) considered the effects 
of cross-flow, anisotropic permeability and velocity dependent diffusion (dispersion) 
coefficients. 

Numerous works on finite amplitude convection have also considered various 
complications of the basic homogeneous fluid layer case [see for example Elder (1967), 
Straus (1974), Caltagirone (1975), Joseph (1976) and Schubert & Straus (1978)l. 
Experimental verification of Lapwood's ( 1948) result by Schneider (1  963), and Katto & 
Masuoka (1967) has been carried out and several later experimental investigations of 
finite amplitude convection have also confirmed the result. Yen (1974) experimentally 
verified the analysis of Sun et al. for the onset of convection of fluid with a density 
maximum. 

In all the work mentioned above the porous layer was assumed to be homogeneous 
or, in the case of Gheorghitza, weakly inhomogeneous. Three works on finite amplitude 
convection have considered inhomogeneous layers. Donaldson ( 1962) carried out a 
numerical investigation of convection in a two-layer system for the special case of an 
impermeable but thermally conducting bottom layer. Ribando & Torrance (1976) 
considered an exponential variation in the ratio of viscosity to permeability. Very 
recently finite amplitude convection for a three-layer system was numerically investi- 
gated by Rana (1977). However no study of the onset of convection in a general 
inhomogeneous porous layer has been reported. Since in a geothermal context inhom- 
ogeneity, particularly layering, is common, the problem is of practical importance. The 
present work develops the formalism required to determine the criterion for the onset 
of convection in an inhomogeneous multi-layered porous medium. The analysis pre- 
sented is quite general and can readily be applied to any number of layers. In  the 
present work detailed results for two- and three-layer configurations are presented. 
These represent model geothermal fields where a permeable zone is overlaid by a less 
permeable layer or where a permeable aquifer occurs in the interior of a matrix with a 
different permeability. 
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2. Problem formulation 
A saturated permeable layer of total thickness d, consisting of N separate hom- 

ogeneous layers is considered. The thickness, permeability and thermal conductivity 
may vary from layer to layer. The system is bounded below (beneath layer 1) by an 
impermeable isothermal surface at  a temperature T, + AT. Here T, is the temperature 
of the top surface (atmospheric) which is considered to be either impermeable (case A )  
or a t  a constant pressure (case B) (see figure 1). 

Within a typical stratum, layer i ,  of thickness di, the usual equations of conservation 
of mass and energy and Darcy’s law are assumed to hold: 

m, appt + V . v = 0, 

a/at [m, pcT + (1 -mi) pici TI + V . (cTv) = ki V2T, 

Vp = /@ - v/K~v. 

(1) 

(2 

( 3 )  

Here mi, K,, p$, ci are respectively the porosity, permeability, density and specific 
heat of the unsaturated porous medium in layer i ,  ki is the thermal conductivity of the 
saturated medium, p, c,  v, v are respectively the density, specific heat, kinematic 
viscosity and mass flux vector of the fluid and T andp are the temperature and pressure 
a t  a point within the saturated porous medium. The acceleration due to gravity is 
represented by the vector g. 

The density is assumed to vary linearly with temperature, 

P = P,[l-a(T--,)ll 

where a is a constant and pa is the density of the fluid at  temperature T,. 
In studying the onset of convection in this system using linear stability methods, 

only steady solutions of (1)-(3) are of interest. Also in a linear stability analysis it is 
sufficient to consider two-dimensional motion. Whether the preferred motion is in fact 
two-dimensional rolls or haa some three-dimensional form can only be determined by 
analysis of the finite amplitude behaviour of the system (see Straus 1974 for example). 
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Therefore in the following analysis the two-dimensional region 0 < x < L, 0 < z < d 
is considered. On the lateral boundaries, corresponding either to the limits of each 
convection cell or possibly to some real physica1 confinement, conditions of no fluid 
flow and no heat flow are imposed. Taking v = (u, 0,  w )  and assuming all variables 
depend only on x and 2, (1)-(3), for layer i, become: 

au aw -+- = 0, 
ax az 

V 
= -p , [ l -a(T-T, ) ]g- -w,  

a2 Ki 

(4) 

(7) 

i 
for 0 < x < L, z , - ~  < z < z,, where zi = a). Note that for steady flows the use of 

4 - 1  a -  

mass flows as variables avoids the need to use the Boussinesq approximation. 

respectively: 
The thermal and fluid boundary conditions on the bottom and top of the system are, 

T = T , + A T  and w = O  on z = O ,  

T = T, and 
w =  0 on z = d  caseA, b =* a on z = d case B. 

At each interface continuity in temperature, pressure, vertical mass flux and vertical 
heat flux is assumed (Gheorghitza used the incorrect condition of continuity in 
horizontal velocity instead of continuity in pressure). Thus T ,  p ,  w and cTw + k aT/az 
must be continuous at  each interface. Using the continuity of T and w the last condition 
can be simplified to requiring continuity in k aT/az at each interface. 

The basic solution procedure to determine the condition for the onset of convection 
in this layered system is to investigate small perturbations to the conduction solution 
(u = w = 0 ) .  The conduction solution for the temperature T, is a piecewise linear 
function given by 

N 

J - 1  
for zr-l < z < z, where 8, = dd/ki and 6 = I: 6,. This distribution corresponds to a 

temperature drop A% across layer i given by 

AT, = 8,AT/8. 

Now, following the standard linear stability analysis procedure, the system is 
linearised by substituting u = u', w = w', T = T,+ T' and p = pc+p' kc is obtained 
easily from T, by using (7)] and neglecting products of the smell quantities u', w', T' 
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and p'. It is convenient to non-dimensionalize the variables differently in each layer. 
For layer i the variables are defined by: 

q = T'/Aq, pi = p'Kic/wdki, 

(u,, w,) = (u', w') cd/r,k$, X = x/d,  

and 2, = (Z--Z$-Jd,. 

Here r, = d,/d, the ratio of the thickness of layer i to the total thickness. Substitution 
into (4)-( 7), of these non-dimensiondized perturbations to the conduction solution, 
gives for layer i: 

for 0 c X < L/&, 0 < Z, < 1 and i = 1,2, . . ., N. Here the Rayleigh number for layer i, 
given by 

R, = PagK&UAT,d, 
V k i  

9 

is based on the layer depth d, and the layer temperature drop AT,. 
To aid the solution of (8)-( 1 l), an auxiliary function $, is introduced such that 

where $, is a stream function for layer i. Then using (8) and (10) it follows that 

and (8)-( 11) can be simplified to give a pair of equations for di and T,: 

and 

for 0 < X < L/&, 0 < Zi c 1 and i = l , Z ,  ...,I?. The boundary conditions can be 
expressed in terms of the non-dimensional quantities dr,  as follows. On 8, = 0, 
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On 2, = 1 or Z,+, = 0, 
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f o r i =  1,2  ,..., N - l , a n d o n Z N =  1, 

(3 = o case A ,  

On the lateral boundaries X = 0 and X = L / d ,  

3. Solution procedure 
The boundary conditions on X = 0, L i d  lead to Fourier cosine series for both T,, #i:  

n=1 

where TC, $7, n = 1,2,  . .. are functions of Zi only (the leading terms in the series c, $7 
both turn out to be zero and are neglected from the start). Substitution of these 
expansions into (12) and (13) gives 

where D, = d/dZ, ,  and ai = n d i / L ,  for i = 1,2,  . . . , Nand n = 1,2, . . . . Similar matching 
after substitution in the boundary conditions gives, for n = 1,2, . . . , on 2, = 0: 

On 2, = 1 or Zi+l = 0, 
TT = 0, $T = 0. 

f o r i =  1 , 2  ,..., N - l . O n Z N =  1, 

4% = 0 case A ,  Tg= 0, and 

Elimination of either Tr or $T from (14) and (15) gives 

{[D: - (nai)2]2 - Ri} (TT, $7) = 0. 
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Thus, using (14)  and (15), the solutions for TT and g5T can be written in the form 

Tr = A, sinh Bizi + B, cosh pi Zi + E, sinh y, 2, + .l$ cosh y, Zi, 

&’ = ri(Ai sinh pi 2, + Bi cosh pi Zi - Ei sinh yt Zi - I$ cosh yi Z,)/n, 

(17) 

(18) 

where pi = a,[n(n + qi)34 and y, = a,[n(n - 7,)]4 with 7, = (Ri)4/ai. Note that y, may 
be imaginary or zero with corresponding trigonometric or linear forms in (1 7) and (18). 
In  (17) and (18), the wavenumber superscript ‘n’ has been omitted from the coefficients 
Ai, Bi, E,, & to avoid unnecessarily cumbersome notation. 

Substituting (17) and (18) into the boundary conditions gives 4N homogeneous 
linear equations in the 4N unknown coefficients A,, B,, E, and Fi, i = 1,2, ..., N .  
These are 

B,+& = 0, ( 1 9 4  

B, - F1 = 0, (19b) 

(194 

( 1 9 4  

(y,/ki) (Ai sinhp, + Bi coshp, + Ei sinh y, + & cosh yi) = (r,+l/k,+l) (Bi+, + &+,), 

r,k,~,(A,sinh~,+B,cosh~,-E,sinh y,-F,cosh y,) = ri+lk,+lr]i+l(Bi+l-&+l), 

A& coshp, + BJi sinhpi + E,y, cosh y, + Fi y, sinh yi = A,+,Bi+, + E,+l yi+,, (19e) 

(ki/Ki)rr(A,picoshpi+ Bi/3,sinhpi- E,y,cosh yi-&yisinh y,) 

= (k,+l/Ki+l) %+l(Ai+lPi+l- Ei+lYi+l), (19.f) 

( 1 9 d  

for i = 1,2, ..., N -  1, and 

AN sinh /3N + B N  cash /3N + E N  sinh YN + F N  cash YN = 0 

AN sinh 18, + B N  COSh p N  - E N  sinh YN - F N  cash yN = 0 

and either (case A) 

or (case B)  
(19h) 

AN/3NGOShpN+ B ~ ~ ~ S i n h ~ ~ - E , ~ ~ ~ ~ C O S h ~ ~ ~ - E I ~ ~ ~ S i n h y ~  = 0. (19i) 

These equations can be written in matrix form as 

MA = 0, (20) 

where AT = (A,, B,, El, F,, A,, B2, E,, F,, ..., AN, BN, EN, FN) and the 4N x 4N matrix 
M can be obtained from the (19a-i). The condition for a non-trivial solution then is 
det M = 0 which is solved here for the variable R defined by 

8d R pagK1cudAT R = - A =  
8, d, 47~2 47T2Vk1 

This parameter R is a Rayleigh number, given in terms of the thickness and tempera- 
ture drop for the whole layer and the conductivity and permeability for layer 1, 
divided by 4n2, which is the minimum critical value for a homogeneous layer with an 
impermeable top. The relationship between R, and R is obvious from the definition 
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above. The Rayleigh number for each layer R, can also be related to R, and then to 
R using the relationship 

Ri Ki dq k: 
q = k4K,dl' 

By adding and subtracting (19c )  and (1 9d) in the right combination, formulae for 
B,+, and Fi+, in terms of A,, Bi, Ei and 4 can be obtained. Similarly, formulae for A,,, 
and E,,, follow from ( 19 e )  and (1 9 f ) .  These equations can then be written in the form 

At+, = MiA,, i = 1,2, ,..,I?-I, (21) 

where AT = (A+, B,, E,, 4) and M, is a 4 x 4 matrix whose elements are derived from 
(19of) in the straightforward manner outlined above. The two sets of boundary 
conditions (19a, b )  and (19g-i) can be written in the form 

L,A, = 0 P a )  

and LNAN = 0. (22b)  

The boundary condition (22a)  gives 23, = F, = 0 which can be combined with (21), 
for i = 1, to give 

Aa = Q~[:] 

where Q1 is a 4 x 2 matrix which can easily be derived in detail using (1 9c-f ) for i = 1. 
Equations (21), ( 2 2 b )  and (23) then give the equation 

which for a non-trivial solution requires the condition 

det (LN MN-l MN-2 . . . M, Q1) = 0. (24) 

Since the final matrix involved is 2 x 2 rather than 4 N  x 4N as in (20), it  is more suitable 
for numerical calculations. 

In  all but a few very simple cases, solution requires numerical methods. This is a 
straightforward matter and is not discussed in detail here. An algebraic check of the 
methods is provided by case ( A )  for a homogeneous layer with equal width and depth 
for which R, = 4n2, leading to the solution R = 1. 

4. Numerical results 
There are clearly such a wide variety of possible configurations and values of various 

parameters that only a small number of results can be presented. Consequently 
detailed analysis is confined to the two- and three-layer cases, and in particular to the 
case of an aquifer either overlaid (' capped ') by a less permeable layer, or lying centrally 
between two layers of another permeable material. Since the emphasis is chosen to be 
on the different permeabilities of the layers, the conductivities of all the layer materials 
are assumed to be equal in what follows. (Results for layers of different conductivities 
may easily be found in the same way as those to be presented.) 

The physical configuration considered for most of the calculations is a square cross- 
section (L/d = 1.0). This choice allows a comparison of values of R as well as flow and 
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10 
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10-3  10-2 lo-' 1 10 10-2 10-3 

10-3 10-2 10-1  1 10 1 0 3  

K, l K ,  
FIQURE 2. The critical Rayleigh number R for the lowest 10 horizontal wavenumbers n for a 
two-layer system with L/d  = 1.0 and rl = 0.3. Impermeable (a) and constant pressure (b)  upper 
boundary conditions were used. 

isotherm patterns at onset for various layer combinations. Calculation of the value of R, 
which is a scaled Rayleigh number based on the parameters of the bottom layer, gives 
a comparison with the critical Rayleigh number for a homogeneous layer which is 
composed completely of the material of the bottom layer for the stratified case. 

For a square cross-section, the number of cells in the horizontal direction which 
13 PLM 96 
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Bottom layer 0.1 0.2 0-3 0.4 0.5 0.6 0.7 0.8 0.9 

Horizontal 8 4 3 2 2 2 1 1 1 

Critical Rayleigh 83.8 20.9 9.32 5.24 3.42 2.57 1-82 1-39 1.14 

thickness r, 

wavenumber n 

number R 

TABLE 1 .  Critical Rayleigh numbers for a two-layer system with square 
crow-section, a8 KJK1 + 0. 

FIQURE 3 (a). For legend see next page. 

occur a t  onset varies with the layer configuration. Results are presented for this aspect 
of the problem for two-layer and three-layer systems with various choices of per- 
meabilities. Also the ratio L/d is varied for a number of layer configurations to obtain 
the corresponding minimum Rayleigh number and therefore the critical Rayleigh 
number for onset in a layered system infinite in the horizontal direction. 

5. The two-layer system 
For a porous medium consisting of two layers, results were calculated for a variety of 

parameters, both for the ‘closed’ or impermeable top (case A )  and for the ‘open’ or 
constant pressure top (case 23). As mentioned above it was assumed that conductivities 
are equal, i.e. k, = k,. 
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FIGURE 3. Streamlines (-) and isotherms (---) at onset for a two-layer system with 
L / d  = l.Oandr, = 0.3 andanimpermeableupper boundary. (a) K, /K ,  = 0.1; ( b )  K J K ,  = 0.01. 

Aspect ratio L / d  = 1.0 

For most of the results obtained, the aspect ratio was fixed at 1.0 corresponding to a 
square cross-section. For a range of different depths of the layers, values of Rn, the 
value of R corresponding to n cells arranged horizontally (n is the horizontal wave- 
number) were worked out for a wide range of the ratio of the permeabilities of the 
layers, K, /K ,  (K , /K ,  < 1 corresponds to a ‘capped’ aquifer, while K,/K,  > 1 corre- 
sponds to an aquifer overlying a less permeable, but conducting stratum). 

The values of R* for the typical configuration L / d  = 1.0, rl = 0.3, k, /k ,  = 1.0, for 
10-9 Q K,/K,  < lo8 and for the lowest 10 horizontal wavenumbers 12, are graphed in 
figure 2 (a) for the ‘closed top’ case, and in figure 2 (b) for the ‘open top’ case. For an 
impermeable top layer (R , /K ,  + 0), the preferred cell width corresponds to approxi- 
mately square cells in the bottom layer. Similarly for an impermeable bottom layer 
(K , /K ,  3 co), the preferred cell width corresponds to approximately square cells in 
the top layer. The rl = 0.3 case gives three cells for K, /K ,  + 0 and one cell for 
K, /K ,  + 00. It is noticeable that a very small permeability in the top layer is required 
in order to force convection to occur mainly in the bottom layer. For the closed surface 
case, for small values of K, /K ,  (less than approximately 0-040), onset takes place for 
n = 3, while for 0.040 < K,/K,  < 0.059 the fluid will first move in a double-celled flow, 
and for K J K ,  > 0.059, the preferred flow at onset is in a single cell. Results for the 
‘open surface ’ case are similar: all values of R calculated are smaller than those for the 
corresponding ‘ closed surface ’ results, with the difference decreasing as K,/K,  + 0. 
As K , / K ,  becomes small, the difference between the two upper surface conditions 
becomes less and less important, as the whole upper layer approaches impermeability 
relative to the lower layer. 

13.2 
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/--\ /- -\ / /  / \ / \ 

FIGURE 4. Streamlines (-) and isotherm (- - -) at onset for a two-layer aptem with L/$ = 1.0 
and rl = 0.3 and a constant pressure upper boundary. (a) K z / K ,  = 0.1 ; (b)  K, /Kl  = 0.01. 

As expected, the values of Rn decrease with increasing permeability of the upper 
layer (see figure 2, for example). When K,/K,  = 1 (corresponding to a homogeneous 
layer), the minimum value of R for the closed surface case is R1= 1.0, which is the 
result predicted first by Lapwood (1948) and confirmed many times since. 

Results for other depth ratios show a similar behaviour. For rI = 0.1, for example, 
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1.2 

1 .o 

0.8 

0.6 

0.4 

0.2 

0 
I 0-3 10-1 1 

K2 IK, 
FIGURE 5. Preferred cell width at onset for an infinite two-layer system. 

the wavenumber for the minimum critical value of R n  changes from n = 1 to n = 8 
at K,/Kl  N 0.008. For a permeability ratio above this value, the flow at onset results 
in a single cell, while for permeability ratios below 0.008, flow begins in eight identical 
cells. In  the limit as K , / K l  --f 0, the number of cells preferred at  onset decreases with 
increasing rl .  Table 1 gives some values of n, together with the corresponding values of 
Rn (note that these values are the same for both the ‘open ’ and ‘closed surface ’ cases). 

The values of R indicate that the presence of an upper, less permeable layer greatly 
increases the temperature difference required to destabilize the fluid in a two-layer 
system (5.655,9-194 and 9.304 times respectively for the ‘ closed surface’ case rl = 0.3 
and K,/Kl  = 0.1, 0.01 and 0.001). 

Most of the flow, as may be expected, takes place within the more permeable layer. 
Streamlines and isotherm patterns a t  onset are shown in figure 3 and figure 4 for the 
‘closed’ and ‘open surface’ cases for rl = 0.3, and K, /K l  = 0.1 and 0.01, the preferred 
number of cells being 1 and 3 respectively. It can be seen that very little flow takes 
place in the less permeable layer, and the cells of flow in the more permeable layer tend 
to form in a shape that is approximately square. 

Variation in mpect ratio 

Variation of preferred cell width with permeability ratio for an infinite layer is shown 
in figure 5.  These values are found by minimizing R with respect to the aspect ratio 
L/d of the two-layer system. 

It is interesting to note that the preferred mode a t  onset has the form of an approxi- 
mately square cell, either occupying both layers or the bottom layer only if the top 
layer has a low enough permeability. As figure 5 shows there is a sudden transition 

13-3 
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10-3  10-2 10-1 

K2lK, 
FIGURE 6. Minimum Rayleigh number at onset for an infinite two-layer system. 

10-3 10-2 lo-' 1 10 1 o2 103 
K, lK1 

FIGURE 7(a ) .  For legend see next page. 
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1 10 I02 1 0 3  

K2 l K ,  

three-layer system with Lld  = 1.0 and r2 = 0.2 and an impermeable upper boundary. 
FIQURE 7. The critical Rayleigh number R for the lowest 10 horizontal wavenumbers for a 

between these two alternatives. An examination of the dependence of the critical 
Rayleigh number on the aspect ratio L / d  shows that there are two local minima for 
rl < 0.4. One of these corresponds to L/d -N 1 (square cell in the whole system) and the 
other to L/d 2 rl (square cell in the bottom layer). The bifurcation shown in figure 5 
results from the change-over from the first of these local minima to the second of the 
minima being the absolute minimum. In figure 6 the Rayleigh number for onset is 
shown. Again the bifurcation is clear. 

6. The three-layer system 
Results are presented for an aquifer of depth r2 = 0.2 sandwiched between two layers 

of equal depth (rl = r3 = 0.4), and of equal permeability, K3 = K,  (but different to 
that of the middle layer, K,) and with the upper surface ' closed '. Results are presented 
for the square cross-section L/d = 1.0 only. 

The values of P, n = 1,2, . . . , I 0  for varying permeability ratio K 2 / K ,  ( = K2/K3) 

are graphed in figure 7 (K, /K,  > 1 corresponds to a permeable aquifer lying between 
two less permeable, but conducting layers, while K, /K ,  < 1 corresponds to a less 
permeable stratum cutting through a permeable matrix). The results show that a 
considerable permeability difference is required to change the flow from that for a 
homogeneous layer. For 0.021 < K 2 / K ,  < 19.0 onset occurs for n = 1. For a very 
impermeable (K , /K ,  c 0.021) middle iayer, most of the flow occurs in the top and 
bottom layers with approximately square cells (n = 2). For a very permeable middle 
layer, the flow occurs mainly in the middle layer with n = 2 for 19.0 < K 2 / K 1  c 48.4 
and with n = 3 for 48.4 < K2/K, .  Similar behaviour is exhibited for cases where the 
middle layer is of different thickness. 
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I 

( b )  

Elom 8 (a, b) .  For legend see next page. 
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(if) 

FIGURE 8. Streamlines (-) and isotherms (- - -) at onset for a three-layer 
L / d  = 1.0 and rB = 0.2 and an impermeable upper boundary. (a) K,/& = 100; (b)  
(c) K,/K,  = 0.1; (d) K,/K,  = 0.01. 

system with 
K , / K ,  = 10; 
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Again, the values of R increase with decreasing permeability of the middle layer. 
This result has special significance with regard to the estimation of the Rayleigh 
number of a natural hydrothermal system which is usually calculated from average 
parameters for an assumed approximately homogeneous layer. 

The presence of a layer of different permeability in an otherwise homogeneous 
system is seen to markedly affect the temperature difference required to destabilize 
the fluid (for the example presented, rl = rs = 0.4, the factors are 0,017, 0.160, 0.701, 
2-334, 4.764 and 4.920 for K2/Kl  = 1000, 100, 10, 0.1, 0.01 and 0.001 respectively), 

Stmmlines and isotherm patterns for the permeability ratios K,/Kl = 100, 10, 
0.1 and 0.01 are shown in figure 8. Most of the flow takes place in the more permeable 
layer(s). The isotherm patterns are not altered a great deal, however, from the hom- 
ogeneous case, unless the permeability ratio is greatly different from 1. 

As K2/Kl  + 0, the flow forms two separate cells in the upper and lower more 
permeable layers, separated by an almost impermeable layer. The flow patterns 
remain influenced by the conducting effect of the middle layer, which connects the 
upper and lower convection cells. (The isotherm pattern in figure 8 d  shows the 
influence clearly, for the case K 2 / R ,  = 0.01.) 

7. Conclusions 
The two- and three-layer examples considered above are by no means exhaustive. 

It is of interest to consider a very thin middle layer, for example. However they will 
serve to demonstrate the sort of phenomena which can occur in relation to the onset 
of convection in a layered porous medium. The results clearly show that very significant 
permeability differences are required to force the layered system into an onset mode 
different from that for a homogeneous system. Since such permeability differences do 
occur in hydrothermal systems, the problem has practical relevance. 

The methods of analysis presented here are quite general and could be used to 
examine more complicated layered systems. 
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